Refine Your Search

Topic

Search Results

Technical Paper

Novel Electromechanical Brake Actuator Adopting the Two Way Ball Screw

2015-09-27
2015-01-2698
In this paper, a novel Electromechanical Brake actuator (EMB) is redesigned aimed at an electric vehicle driven by wheel hub motor. The two way ball screw is adopted in this mechanism. Clearance automatic adjustment and parking braking function is added in this mechanism. As a consequence, fast braking response is achieved and the wear difference of the inner and outer pads can be minimized and the initial braking force can also be improved. The electric vehicle is based on a traditional chassis. In this electric vehicle which driven by wheel hub motor, the brake disc and brake actuator will be correspondingly moved inside because wheel hub motor will take up inner space of wheel hub. As a result, the actuator might interfere with the suspension and steering systems and influence hard spot of chassis design. To solve this problem, conversely installed caliper concept is used in this paper.
Technical Paper

Numerical Investigation on Brake Noise Mechanism Incorporating Nonlinear Effects and Complex Eigenvalue Extraction

2008-10-12
2008-01-2535
Numerical simulation of instabilities of brake systems based on complex mode analysis is presented in this paper. The theoretical analysis shows that the friction-induced unsymmetrical system stiffness matrix results in instability, and nonlinear static analysis plays a key role in the overall analysis. The frictional study shows how unstable mode occurs, in addition to that the nonlinear effects are taken into considerations and the one variable regression function is employed to set up the relative predict functions.
Technical Paper

Optimal Regenerative Braking Control for 4WD Electric Vehicles with Decoupled Electro-Hydraulic Brake System

2015-04-14
2015-01-1117
Regenerative braking control for a four-wheel-drive (4WD) electric vehicle (EV) equipped with a decoupled electro-hydraulic brake system was studied. The energy flow of the 4WD electric vehicle was analyzed during braking, and the brake force distribution strategy between the front-rear axles, regenerative braking and hydraulic braking was studied. Considering ECE R13 regulations, motors and battery pack characteristic constraints, the optimal regenerative braking control strategy using Genetic Algorithm (GA) was proposed. A Hardware-in-loop (HIL) test was built to verify the proposed regenerative braking control strategy. The results show that the optimal regenerative braking control strategy for the 4WD electric vehicle was advantageous over the comparison program, and regenerative energy efficiency reaches 78.87% under the Shanghai Urban Driving Cycle (SUDC).
Technical Paper

Optimal Torque Allocation for Distributed Drive Electric Skid-Steered Vehicles Based on Energy Efficiency

2018-04-03
2018-01-0579
Steering of skid-steered vehicles without steering mechanism is realized by differential drive/brake torque generated from in-wheel motors at left and right sides. Compared to traditional Ackerman-steered vehicles, skid-steered vehicles consume much more energy while steering due to greater steering resistance. Torque allocation is critical to the distributed drive skid-steered vehicles, since it influences not only steering performance, but also energy efficiency. In this paper, the dynamic characteristics of six-wheeled skid-steered vehicles were analyzed, and a 2-DOF vehicle model was established, which is important for both motion tracking control and torque allocation. Furthermore, a hierarchical controller was proposed. Considering tire force characteristics and tire slip, the upper layer calculates the generalized force and desired yaw moment based on anti-windup PI (proportion-integral) control method.
Technical Paper

Pressure Estimation Algorithms in Decoupled Electro-Hydraulic Brake System Considering the Friction and Pressure-Position Relationship

2019-04-02
2019-01-0438
This paper presents several pressure estimation algorithms (PEAs) for a decoupled electro-hydraulic brake system (EHB), which is driven by an electric motor + reduction gear. Most of the pressure control solutions are based on standard pressure-based feedback control, requiring a pressure signal. Although the pressure sensor can produce the pressure feedback signal, it will increase cost and enlarge installation space. The rotation angle of electric motor is available by the built-in sensor, so the pressure can be estimated by using the rotation angle. Considering the typical nonlinearities (i.e. friction, pressure-position relationship) and uncertainties (i.e. disturbance caused by friction model), the estimation-oriented model is established. The LuGre model is selected to describe the friction, and the pressure-position relationship is fitted by a quadratic polynomial.
Journal Article

Programmed Load Spectrum for Fatigue Bench Test of a Vehicle Body

2016-04-05
2016-01-0387
A compiled method of the programmed load spectrum, which can simplify and accelerate the fatigue bench test of a car body, is proposed and its effectiveness is checked by the fatigue simulation. By using the multi-body dynamics model with a satisfactory accuracy, the virtual iteration is applied to cascade body loads from the wheel hubs. Based on the rain-flow counting method and statistics theory, the distributions of the body loads are analyzed, and then the programmed load spectrum is compiled and simplified. Through comparative study, the simulation results of random and programmed load spectrum are found to agree well with each other in terms of the damage distribution and fatigue life, which demonstrates the effectiveness of the presented method.
Technical Paper

Research on Collision Avoidance and Vehicle Stability Control of Intelligent Driving Vehicles in Harsh Environments

2022-12-16
2022-01-7128
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results.
Technical Paper

Speed Tracking Control for All-Terrain Vehicle Considering Road Slope and Saturation Constraint of Actuator

2017-09-23
2017-01-1953
In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
Journal Article

Statistical Analysis of Impacts of Surface Topography on Brake Squeal in Disc-Pad System

2014-04-01
2014-01-0027
A disc-pad system is established to study impacts of surface topography on brake squeal from the perspective of statistical analysis. Firstly, surface topographies of brake disc and pad are precisely measured on the scale of micron and are statistically analyzed with a three-dimensional evaluation system. Secondly, the finite element model of brake disc and pad without surface topographies is created and verified through component free modal tests. Thereby the valid brake squeal model for complex modal analysis is built with ABAQUS. An effective method is developed to apply interface topographies to the smooth contact model, which consequently establishes sixty brake squeal models with topographies. Thirdly, impacts of surface topography on brake squeal are studied through comparison and statistical analysis of prediction results with and without topographies.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

Study on the Braking Torque Allocation of the ABS Based on the Frequency of the Electro-Hydraulic Brake

2015-09-27
2015-01-2703
Study on the braking torque allocation of the ABS (Anti-lock Brake System) of the electro-hydraulic brake system in the distributed drive electric vehicles, using a hierarchical control structure, of which the lower controller takes a braking torque allocation strategy based on frequency, so as to achieve a good braking effect. The lower controller uses the strategies which are based on the filter principle or the weighted least squares algorithm. To the former, Butterworth filter is selected to execute the braking torque allocation. Then the ABS braking torque allocation strategy based on Butterworth filter and the weighted least squares are designed and analyzed respectively, finally their braking effects are simulated and contrasted in Simulink and AMESim.
Technical Paper

The Design and Evaluation of EMB Actuator Scheme

2017-09-17
2017-01-2509
Electromechanical Braking System (EMB) stops the wheel by motor and related enforce mechanism to drive braking pads to clamp the friction plate. It is compact in sized as well as faster in response, which solves the issue of potential leakage and slows response of traditional hydraulic brake system. The institutions at home and abroad have put forward all kinds of new structural schemes of EMB. At present, there are various EMB structural schemes, but the analysis and evaluation of these schemes are relatively few. In this paper, on the basis of a large number of research, the EMB actuator is modular decomposed according to function ,then the parametric 3D model library of each function module is established. According to brake requirements of the target vehicle, a development platform is set up to match EMB actuator structure scheme quickly.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Vehicle Validation for Pressure Estimation Algorithms of Decoupled EHB Based on Actuator Characteristics and Vehicle Dynamics

2020-04-14
2020-01-0210
Recently, electro-hydraulic brake systems (EHB) has been developed to take place of the vacuum booster, having the advantage of faster pressure build-up and continuous pressure regulation. In contrast to the vacuum booster, the pressure estimation for EHB is worth to be studied due to its abundant resource (i.e. electric motor) and cost-effective benefit. This work improves an interconnected pressure estimation algorithm (IPEA) based on actuator characteristics by introducing the vehicle dynamics and validates it via vehicle tests. Considering the previous IPEA as the prior pressure estimation, the wheel speed feedback is used for modification via a proportional-integral (PI) observer. Superior to the IPEA based on actuator characteristics, the proposed PEA improves the accuracy by more than 20% under the mismatch of pressure-position relation.
Technical Paper

Vibration Analysis of Series-parallel Hybrid Powertrain System under Typical Working Condition and Modes

2018-04-03
2018-01-1291
Powertrain system of series-parallel hybrid vehicle contains multiple excitation sources like engine, motor and generator. The reduction of noise and vibration is quite difficult during multiplex working modes or the switch of modes. Aiming at Series-parallel hybrid powertrain system which contains engine, motor and planetary gear subsystems, this paper considered a typical working condition which is based on the power control strategy and established the torsional vibration mechanical model of hybrid powertrain system. The inherent characteristics and transient vibration response of the electric mode, hybrid mode and parking charging mode were studied and it was discovered that the repetitive frequency of the powertrain system under the three working modes is the same which is only related to inertia and meshing stiffness of planetary gear system. The non-repetitive frequency and corresponding vibration modes under the electric mode and parking charging mode are both close.
Technical Paper

Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving

2019-11-04
2019-01-5040
Vehicles equipped with one or several functions of Advanced Driver Assistant System (ADAS) and autonomous driving (AD) technology are more mature and prevalent nowadays. Vehicles being smarter and driving being easier is an unstoppable trend. In the near future, intelligent vehicles will be mass produced and running on the road. However, before the mass-production of intelligent vehicles, a lot of experimental tests and validations need to be carried out to insure the safety and reliability of ADAS and AD technology. Although the road test of real vehicles is the most reliable and accurate test method, it cannot meet the need of rapid development of technology research due to high time and financial cost. Therefore, a high-efficient design and evaluation methodology for ADAS and AD development and test is a must. In this paper, a virtual co-simulation platform based on MATLAB/Simulink, OpenModelica and Unity 3D game engine (MOMU) is proposed.
X